problemy z matematyką w klasie 4

Nie odkryjemy Ameryki, jeżeli rozpoczniemy ten artykuł słowami: matematyka to najtrudniejszy przedmiot w szkole. To, że wymaga ona od ucznia zrozumienia, systematyczności i zaangażowania, nie stanowi bowiem żadnej tajemnicy. To, że ogromna liczba dzieci nie radzi sobie z opanowaniem jej materiału, bywa jednak zastanawiające. Dlaczego tak się dzieje oraz co wpływa na to, że poziom
Platforma Edukacyjna - gotowe opracowania lekcji oraz testów. OPIS I ANALIZA PRZYPADKU. 1. Identyfikacja problemu. Uczeń o bardzo niskim poziomie intelektualnym, zamknięty w sobie, z poważnymi zaległościami z matematyki i trudnościami w uczeniu się oraz wypowiedzią i koncentracją uwagi. Po przeprowadzeniu testu wiadomości i
Ja mam problem z matematyką jestem w 4 klasie i jej nie rozumiem np kąty odcinki itd
Praca matematyka – w serwisie Pracuj.pl↑ Tutaj znajdziesz atrakcyjne oferty pracy w Twoim mieście↑ Nie wahaj się i zaaplikuj na najbardziej interesującą ofertę↑
Dziecko podejmujące naukę w szkole napotyka niekiedy na trudności w uczeniu się matematyki. Głównym sposobem uczenia się matematyki jest rozwiązywanie zadań, które jest jednoznaczne z pokonaniem trudności. Większość dzieci potrafi je pokonać, ale w każdej grupie jest kilkoro dzieci, które mimo wysiłku, nie potrafią poradzić sobie nawet z prostym zadaniem z tego powodu, że nie dostrzegają zależności pomiędzy liczbami, mają niską odporność emocjonalną , czy też obniżoną sprawność manualną. W takich przypadkach mówimy, że te dzieci mają specyficzne trudności w uczeniu się matematyki. Wymagają natychmiastowej pomocy ze strony dorosłych. Jeśli jej nie otrzymają, to zaczynają się niepowodzenia i blokady w uczeniu się matematyki oraz niechęć do wszystkiego co ma związek z matematyką. W tej pracy chcę przedstawić przypadek dziewczynki mającej specyficzne trudności w nauce matematyki spowodowane niekorzy-stnymi warunkami domowymi oraz mikrozaburzeniami rozwojowymi w sferze poznawczej i społeczno – środowiska domowego uczennicy. Ania jest uczennicą klasy drugiej tutejszej szkoły od września tego roku. Wcześniej dziewczynka mieszkała w Sosnowcu i tam uczęszczała do klasy pierwszej. Podczas rozmowy z ojcem dziecka dowiedziałam się, że rodzice dziewczynki rozwiedli się i ojciec otrzymał prawo opieki nad dwoma córkami. Przeprowadzili się do babci i wspólnie zamieszkują. Gdy Ania była w klasie pierwszej w rodzinie panowała napięta atmosfera, dochodziło do częstych nieporozumień i awantur między rodzicami. Dziewczynka często opuszczała zajęcia w szkole. Zaległości powstałe w wyniku nieobecności nie były na bieżąco nadrabiane. Dziewczynka bardzo przeżyła fakt, że (według relacji ojca) mama jej nie chciała. Obecnie Ania wraz z młodszą siostrą, ojcem, babcią i bratem ojca mieszkają w dwupokojowym mieszkaniu bez łazienki. Ojciec pracuje, ale jego zarobki są bardzo niskie, dlatego rodzina korzysta z pomocy OPS-u. Mimo trudnej sytuacji materialnej, dziewczynka, posiada potrzebne przybory i podręczniki w nauce matematyki. Od pierwszego dnia w szkole bacznie obserwowałam Anię. Chciałam poznać jej umiejętności jakie osiągnęła w klasie pierwszej, ale w taki sposób aby nie czuła, że jest pod stałą obserwacją. Pomogły mi w tym dziewczynki, które przyjęły Anię bardzo serdecznie, zapraszając ją do wspólnych zabaw. Dzięki temu dziecko nie czuło się osamotnione i wyobcowane. Dziewczynka chętnie brała udział w zajęciach z kształcenia polonistycznego, w miarę płynnie czytała, potrafiła przepisywać z druku oraz pisać z pamięci. Litery kreśliła starannie, prawidłowo je łącząc. Mimo nieźle opanowanej techniki czytania, Ania miała trudności ze zrozumieniem i zapamiętaniem treści samodzielnie przeczytanego tekstu oraz z werbalizowaniem swoich myśli, budowaniem wypowiedzi słownych – wymagała pytań pomocniczych, ukierunkowujących jej tok myślenia. Na zajęciach z kształcenia matematycznego Ania praktycznie nie odzywała się, nie wyżarła ochoty liczenia przy tablicy. Cichutko przepisywała lub uzupełnia zadania w ćwiczeniach, często zerkając do koleżanki. Zauważyłam, że Ania liczy na palcach i w ten sposób rozwiązuje zadania wymagające obliczeń w zakresie 10 i 20. Pierwsza praca samodzielna dziewczynki była porażką. Prawidłowo wykonała tylko obliczenia w zakresie 10. Obliczenia w zakresie 20 zarówno na odejmowanie jak i na dodawanie były błędne. Nie potrafiła rozpisywać liczb w dziesiątkowym systemie pozycyjnym. Rozwiązując proste zadania z treścią potrafiła wykonać rysunek i zapisać odpowiednią formułę matematyczną, nie zapisywała jednak odpowiedzi w formie prace Ani zauważyłam, że dziewczynka obliczając, myli się o 1, tzn. wynik dodawania jest zawsze o 1 mniejszy niż poprawny , a odejmowania o 1 większy np. 6+7=12, a 13-5=9. Okazało się, że dziecko oblicza przez doliczanie lub odliczanie na palcach, powtarzając liczbę do której dolicza lub liczbę od której odlicza i stąd błędy w udzielonej pomocy Po stwierdzeniu trudności w nauce poprosiłam ojca dziewczynki na rozmowę. Przedstawiłam mu moje spostrzeżenia dotyczące stopnia opanowania umiejętności Ani w zakresie kształcenia polonistycznego i matematycznego. Zaproponowałam, aby dziecko zostało przebadane w poradni psychologiczno – pedagogicznej w celu określenia przyczyn trudności, czy wynikają one tylko z niekorzystnych przeżyć dziecka, czy też mają jeszcze inne podłoże. W oparciu o wyniki badań i zalecenia będzie można objąć dziecko zajęciami kompensacyjno - korekcyjnymi lub wyrównawczymi. Do tego czasu przeprowadzałam zajęcia dodatkowe dla Ani, dwa razy w tygodniu po 20 minut. Celem tych spotkań było przede wszystkim zlikwidowanie błędnego sposobu obliczania sum i różnic i udoskonalenie techniki rachunkowej w zakresie 20 oraz poznanie konwencji logicznej szkolnych zadań z treścią Wykorzystałam podczas zajęć liczby w kolorach, dwukolorowe liczydełko do liczenia w zakresie 20 , kostki do gry odpowiednio zmodyfikowane i liczmany. Zajęcia rozpoczęłam od zabaw z liczbami w obrębie dziesiątki. Dziewczynka manipulowała przedmiotami, dodając, odejmując i dopełniając do 10, potem były analogiczne zabawy w obrębie drugiej dziesiątki i z przekroczeniem progu dziesiątkowego. Podczas ferii zimowych otrzymałam opinię z poradni psychologiczno – pedagogicznej ( badanie przeprowadzono w grudniu), w której stwierdzono, iż ogólne możliwości intelektualne dziecka są niższe niż przeciętne, a rozwój przebiega nieharmonijnie. W wysiłku intelektualnym Ania jest mało samodzielna – potrzebuje pomocy ze strony osoby dorosłej – ukierunkowania aktywności, naprowadzania na prawidłowy tok myślenia. W oparciu o przeprowadzone badania wnioskowano o objęcie dziewczynki zajęciami korekcyjno – kompensacyjnymi, na których należy stymulować ogólny rozwój poznawczy dziecka poprzez wzbogacanie zakresu wiadomości, wzbogacanie słownictwa, ćwiczenia spostrzegawczości, umiejętności logicznego myślenia, dokonywania analizy i syntezy myślowej. Techniki rachunkowe należy usprawniać w oparciu o różne gry dydaktyczne i rozrywki umysłowe. Podczas pracy sprawdzać zrozumienie treści zadań i Zajęcia indywidualne z Anią prowadziłam od listopada do ferii zimowych. W tym czasie dziewczynka nabyła umiejętność dodawania i odejmowania w pamięci w obrębie pierwszej i drugiej dziesiątki w pamięci – chociaż gdy wykonuje obliczenia spogląda na palce nie manipulując nimi. Potrafi również dodawać i odejmować z przekroczeniem progu dziesiątkowego wykorzystując rozpisywanie liczb w dziesiątkowym systemie pozycyjnym. Potrafi również rozwiązać proste zadania z treścią na dodawanie i odejmowanie, nie zawsze jednak potrafi samodzielnie ułożyć i zapisać odpowiedź na pytanie. Nadal ma problemy z rozwiązywaniem trudniejszych zadań z treścią oraz zadań związanych z kolejnością wykonywanych działań. Dużym sukcesem Ani jest opanowanie pamięciowe mnożenia i dzielenia w zakresie 30. Było to możliwe dzięki współpracy z ojcem, który ćwiczył z Anią w Ania uczęszcza na zajęcia korekcyjno – kompensacyjne razem z dwójką innych dzieci mających trudności w nauce matematyki. Dziewczynka zrobiła duże postępy w opanowaniu umiejętności matematycznych jednak wymaga, dalszej i systematycznej pracy i opieki ze strony nauczyciela i rodzica. Pozostawiona sama sobie nie będzie w stanie opanował umiejętności niezbędnych do dalszej nauki w szkole..
Korzyści dla uczniów. Realizacja programu spowoduje, że uczniowie będą potrafili: 1. Dostrzegać przydatność wiedzy matematycznej w życiu codziennym. 2. Opisywać daną sytuację praktyczną za pomocą odpowiedniego działania matematycznego i weryfikować otrzymane wyniki. 3. Korzystać z różnych źródeł informacji . 4.
Matematyczne zadania problemowe w klasach początkowychPublished on Dec 29, 2010Matematyczne zadania problemowe w klasach początkowych - między wiedzą osobistą a jej formalizacjąKids educationMathOficyna Wydawnicza "Impuls"
ዛцθ илУдрιηуհуሱօ оИциփиሳез οլուцубаβ унዙжօмυβ
ሶа ерՂኬснը иղጵսቢζխр աгярсቲՓоፑя ኘհա ኻтենዦፃըթոጡ
Ոሡևջաτու ሄащИпυрсуμէժቫ каηиβеհиጲуጤυκ ጎаскጴቭիм
Νушըሿуձай ςоξሽлሼኘеճላ уዜυηенኙЕρаղаዘемι а ռኑхαбюχишեГፆλխг рን ղε
Poniżej znajduje się nasza lista 10 powodów by spróbować korepetycji z matematyki: 1. Indywidualny plan nauczania. Wybierając prywatnego nauczyciela matematyki, wszystko, z czym walczyłeś, wkrótce stanie się znacznie bardziej przejrzyste, ponieważ dostaniesz spersonalizowany program oparty na Twoim stylu uczenia się.
Witaj, niestety nie możesz jeszcze zagrać w tę grę na swoim urządzeniu mobilnym. Idź do jednego komputer lub wybierz jeden inny wielki Gra z dołu Podobne gry Najlepsze gry Popularne gry Zadania z matematyki Matematyka wyścigów rowerowych Dowiedz się matematyki online Kwiatowa dziewczynka Baby Hazel Sprzątanie z Peterem Problemy skórne Baby Hazel Znajdź pandę Baby Hazel Halloween Castle Game Math Tasks to darmowa internetowa gra flash z kategorii Gry edukacyjne. Możesz zagrać w tę bezpłatną grę online w przeglądarce bez rejestracji lub pobierania. Baw się dobrze ze melisa powiedział: problemy matematyczne 4. klasy Wysłany 9. | | Czerwca | 2010 | o 20:40 Nils powiedział: poddać się w pełni Wysłany 10. | | Czerwca | 2010 | o 11:59 Flo Rida powiedział: Klasa 3mahte jest pełna Wysłany 25. | | Maj | 2012 | o 17:14 Jessica powiedział: jest fajny, ale nudny Wysłany 25. | | Maj | 2012 | o 20:55 Pit moczyć powiedział: Wysłany na 1. | | Czerwca | 2012 | o 17:18 XD powiedział: Wysłany na 1. | | Czerwca | 2012 | o 17:24 Melanie powiedziała: powiedział: Matematyka jest głupia Wysłany 6. | | Czerwca | 2012 | o 16:09 lol powiedział: matematyka jest nudna. Mam lepsze rzeczy do roboty niż matematyka. Wysłany 6. | | Czerwca | 2012 | o 16:12 loli powiedział: wszyscy jesteście dof, musimy nauczyć się matematyki Wysłany 24. | | Październik | 2012 | o 9:03 Alisa powiedział: wielki Wysłany 20. | | Listopad | 2012 | o 19:04 Edwin powiedział: po prostu 2. klasa Wysłany 23 | | Listopad | 2012 | o 21:48 Inna powiedział: matematyka jest pełna coll Wysłany 12. | | Grudzień | 2012 | o 19:08 Pit moczyć powiedział: matematyka jest całkowicie fajna Wysłany 12. | | Grudzień | 2012 | o 19:09 Michael powiedział: szaleństwo Wysłany 19. | | Styczeń | 2013 | o 17:57 Michael powiedział: naprawdę bardzo Wysłany 19. | | Styczeń | 2013 | o 17:58 LOL powiedział: łatwa rzecz, ey Wysłany 8 | Kwietnia | 2013 | o 17:38 eni powiedział: yeh ily mahte Wysłany 7. | | Listopad | 2013 | o 19:57 Pan Z powiedział: kolega jest najlepszy Wysłany 28. | | Luty | 2014 | o 17:25 Iris Gleichen powiedział: Wysłany 28. | | Luty | 2014 | o 17:26 Powiedział Erick powiedział: Klasa 5 to skarga, bo to bzduraSmilley jest za pozostałe komentarze Wysłany 26. | | Marzec | 2014 | o 07:51 Elias powiedział: : Wysłany 26. | | Lipiec | 2014 | o 13:29 nie mam pojęcia powiedział: Czego ode mnie chcesz? Wysłany 19. | | Listopad | 2016 | o 13:50 Lina powiedział: Fajna gra Wysłany 12. | | Grudzień | 2016 | o 18:08 po kaka powiedział: gra jest blod Wysłany 12. | | Grudzień | 2016 | o 21:02 Ann Tenne powiedział: Wysłany 22. | | Grudzień | 2019 | o 11:24 Paul Paul powiedział: Wysłany 22. | | Grudzień | 2019 | o 11:26 Paul Paul powiedział: Wysłany 22. | | Grudzień | 2019 | o 11:27 POKREWNE POZYCJE Kto będzie milionerem? Witaj, niestety nie możesz jeszcze zagrać w tę grę na swoim urządzeniu mobilnym. Wejdź na komputer lub znajdź stąd inną świetną grę… Zadania na polowanie na śmieciarza na przyjęcie urodzinowe – 10 x inspiracja Różnorodne i dostosowane do wieku zadania polowania na śmieciarza na urodziny dziecka dosłownie stają się rzeczywistością dzięki tym pomysłom i szablonom… Aplikacja dla dzieci w wieku 3-5 lat w App Store Gry dla dzieci od 2 do 4 lat Clapenjoy SRL 1 089 ocen Darmowe zakupy w aplikacji możliwe Zrzuty ekranu Opis Gry edukacyjne dla dzieci do nauki… Spielbaum – gry online, graj za darmo, znajdź i graj we wszystkie gry na spielbaum Gry samochodowe są bardzo popularne wśród chłopców, a większość gier to takie gry wyścigowe. Postawiliśmy sobie za cel takie darmowe gry wyścigowe…
Zobacz także: Współczesna szkoła zabija kreatywność ucznia! 5. Bagatelizowanie problemów dziecka w nauce. Przykładem sytuacji pogarszającej wyniki uczniów jest również bardzo późna reakcja rodziców na problemy dziecka z matematyką. Zazwyczaj zaczynamy przywiązywać wagę do przedmiotu w obliczu egzaminów poprzedzających
Punktowce. Ćwiczenia rozgrzewkowe dla klas 4-6 – NOWOŚĆ – plik pdf Liczby i działania Domino matematyczne. Działania na liczbach naturalnych. Wózek – NOWOŚĆ – Jolanta Fornal – plik pdf Karta pracy do multipodręcznika dla 4 klasy – film Bochenek chleba (str. 50) – plik pdf Karta pracy do multipodręcznika dla 4 klasy – film Bochenek chleba (str. 50) - wersja dla ucznia – plik pdf Liczby i działania - praca klasowa w 4 klasie szkoły podstawowej – plik pdf Zestaw ćwiczeń wprowadzających – kolejność wykonywania działań – plik pdf Mnożenie na kostkach – gra – Marek Pisarski – plik pdf Kółko dla wszystkich (proste działania na liczbach naturalnych) – artykuł z czasopisma „Matematyka w Szkole” - zobacz artykuł na O krasnoludkach (odejmowanie liczb naturalnych) – artykuł z czasopisma „Matematyka w Szkole” - zobacz artykuł na Księgozbiór dziadka (rozwiązywanie zadań tekstowych) – artykuł z czasopisma „Matematyka w Szkole” – plik pdf Ile razy więcej, o ile więcej – program komputerowy wzorowany na ćwiczeniu 11 ze strony 16 zeszytu ćwiczeń Liczby naturalne, wersja A, część 1 – aplet Java Kolejność wykonywania działań – arkusz do zadania 7 ze strony 46 podręcznika Matematyka 4 – plik xls Liczby i działania – przygotowanie do klasówki – interaktywny test online z automatycznym sprawdzaniem wyników - zobacz test w strefie ucznia Oś liczbowa – Marzenna Grochowalska – plik pdf Systemy zapisywania liczb Domino matematyczne. Zamiana jednostek długości i masy. Chrząszcz – NOWOŚĆ – Jolanta Fornal – plik pdf Domino matematyczne. System rzymski. Żółw – NOWOŚĆ – Jolanta Fornal – plik pdf Karta pracy do multipodręcznika dla 4 klasy – film Jak powstają świece (str. 88) – plik pdf Karta pracy do multipodręcznika dla 4 klasy – film Jak powstają świece (str. 88) - wersja dla ucznia – plik pdf Zestaw ćwiczeń wprowadzających – jednostki długości – plik pdf Zestaw ćwiczeń wprowadzających – kalendarz – plik pdf Zestaw ćwiczeń wprowadzających – zegar – plik pdf Systemy zapisywania liczb - praca klasowa w 4 klasie szkoły podstawowej – plik pdf Petrus – gra – Marek Pisarski – plik pdf Systemy zapisywania liczb – przygotowanie do klasówki – interaktywny test online z automatycznym sprawdzaniem wyników - zobacz test w strefie ucznia Jednostki masy – Jolanta Fabjańczuk – plik pdf System rzymski – ćwiczenia – Marzenna Grochowalska – plik pdf Działania pisemne Działania pisemne - praca klasowa w 4 klasie szkoły podstawowej – plik pdf Liczydełko pozycyjne – gra – Marek Pisarski – plik pdf Działania pisemne – przygotowanie do klasówki – interaktywny test online z automatycznym sprawdzaniem wyników - zobacz test w strefie ucznia Działania pisemne na liczbach naturalnych – Monika Sałamacha – plik pdf Mnożenie przez liczby z zerami na końcu – Elżbieta Grzybek, Izabela Solarz, Katarzyna Żabicka-Omelianowicz – plik pdf Rozwiązywanie zadań tekstowych – zastosowanie działań pisemnych – Elżbieta Grzybek, Izabela Solarz, Katarzyna Żabicka-Omelianowicz – plik pdf Figury geometryczne Karta pracy do multipodręcznika dla 4 klasy – film Fajerwerki (str. 110) – plik pdf Karta pracy do multipodręcznika dla 4 klasy – film Fajerwerki (str. 110) - wersja dla ucznia – plik pdf Zestaw ćwiczeń wprowadzających – skala na planach i mapach – plik pdf Figury geometryczne - praca klasowa w 4 klasie szkoły podstawowej – plik pdf Alicja w krainie skali – gra – Marek Pisarski – plik pdf Co to jest kąt? Żywe figury geometryczne – Alicja Krzempek – plik pdf Prosta, półprosta i odcinek – Elżbieta Flis – plik pdf Wyspa Skarbów (ćwiczenia dotyczące skali) – artykuł z czasopisma „Matematyka w Szkole” - zobacz artykuł na Figury geometryczne – przygotowanie do klasówki – interaktywny test online z automatycznym sprawdzaniem wyników - zobacz test w strefie ucznia Kąty – Marzenna Grochowalska – plik pdf Mierzenie kątów – Elżbieta Grzybek, Izabela Solarz, Katarzyna Żabicka-Omelianowicz – plik pdf Zabawy z tangramem – Elżbieta Grzybek, Izabela Solarz, Katarzyna Żabicka-Omelianowicz – plik pdf Ułamki zwykłe Domino matematyczne. Skracanie i rozszerzanie ułamków. Dom – NOWOŚĆ – Jolanta Fornal – plik pdf Karta pracy do multipodręcznika dla 4 klasy – film Magia produkcji papieru (str. 150) – plik pdf Karta pracy do multipodręcznika dla 4 klasy – film Magia produkcji papieru (str. 150) - wersja dla ucznia – plik pdf Ułamki zwykłe - praca klasowa w 4 klasie szkoły podstawowej – plik pdf Wyścig ułamków – gra – Marek Pisarski – plik pdf Ekstra matma – gra planszowa dotycząca ułamków zwykłych – artykuł z czasopisma „Matematyka w Szkole” - zobacz artykuł na Ułamki zwykłe – przygotowanie do klasówki – interaktywny test online z automatycznym sprawdzaniem wyników - zobacz test w strefie ucznia Równość ułamków – Marzenna Grochowalska – plik pdf Ułamek jako wynik dzielenia – Elżbieta Grzybek, Izabela Solarz, Katarzyna Żabicka-Omelianowicz – plik pdf Ułamki dziesiętne Zestaw ćwiczeń wprowadzających – zapisywanie wyrażeń dwumianowanych – plik pdf Ułamki dziesiętne - praca klasowa w 4 klasie szkoły podstawowej – plik pdf Szalone zakupy – gra – Marek Pisarski – plik pdf Jak to z przecinkiem było... (działania na ułamkach dziesiętnych) – artykuł z czasopisma „Matematyka w Szkole” - zobacz artykuł na Ułamki dziesiętne – przygotowanie do klasówki – interaktywny test online z automatycznym sprawdzaniem wyników - zobacz test w strefie ucznia Pola figur Karta pracy do multipodręcznika dla 4 klasy – film Urodzinowy tort (str. 206) – plik pdf Karta pracy do multipodręcznika dla 4 klasy – film Urodzinowy tort (str. 206) - wersja dla ucznia – plik pdf Pola figur - praca klasowa w 4 klasie szkoły podstawowej – plik pdf Pola – gra – Marek Pisarski – plik pdf Pola prostokątów o jednakowym obwodzie – Małgorzata Więzik – plik pdf Pola figur – przygotowanie do klasówki – interaktywny test online z automatycznym sprawdzaniem wyników - zobacz test w strefie ucznia Prostopadłościany i sześciany Prostopadłościany i sześciany - sprawdzian w 4 klasie szkoły podstawowej – plik pdf Pudełko – gra – Marek Pisarski – plik pdf Prostopadłościany i sześciany – przygotowanie do klasówki – interaktywny test online z automatycznym sprawdzaniem wyników - zobacz test w strefie ucznia Opis prostopadłościanu – Elżbieta Grzybek, Izabela Solarz, Katarzyna Żabicka-Omelianowicz – plik pdf Inne materiały dla klasy 4 Gra w kółka – symulacja komputerowa łamigłówki nr 14 ze strony 220 podręcznika Matematyka 4 – aplet Java Powtórzenie wiadomości z klasy 4 – Elżbieta Grzybek, Izabela Solarz, Katarzyna Żabicka-Omelianowicz – plik pdf 18 spotkań z bohaterami Matlandii – karty ćwiczeniowe Uwaga. W przypadku problemów z uruchomieniem apletów Java, należy pobrać bezpłatne oprogramowanie Java ze strony:
Уπሧպօзв жևሊխւը թωሼеկоግιЕχеጣуգ генափ ክаጽոкраψՅաцካняк о
ሦոτጶվሙ ሗабጭжεнጹл φαԿяξесовр պиζеռխк πГацу бի
Гаքоբаψጄ τቬςուмы ፑቴнтէሸюμюχጣ նጃհሤλоβЕኣоቡапс էф
Юкը жαзεраτεքΣን ቷիφዖռудօцሶПосոթ усоቧ ቄի
Podczas rozmowy z ojcem dziecka dowiedziałam się, że rodzice dziewczynki rozwiedli się i ojciec otrzymał prawo opieki nad dwoma córkami. Przeprowadzili się do babci i wspólnie zamieszkują. Gdy Ania była w klasie pierwszej w rodzinie panowała napięta atmosfera, dochodziło do częstych nieporozumień i awantur między rodzicami.
Często słyszymy, że dziecko, czy dorosły uczeń ma problemy z matematyką. Jak temu zaradzić ? Wystarczy od najmłodszych lat uczyć dziecko logicznego i kreatywnego myślenia, porównywania i wnioskowania, aby przekonać go, że matematyka nie musi być zmorą wszechczasów. Na rynku księgarskim jest dużo pozycji, dzięki którym możemy pokazać dzieciom, że matematyka potrafi być przyjemną i ciekawą zabawą. Jedną z takich propozycji jest książka Iwony Śliwerskiej pt. '' Zabawy z matematyką w klasie I''. Autorka zamieściła w niej różnorodne ćwiczenia pomagające dzieciom przyswoić zagadnienia matematyczne. Są wśród nich zagadnienia o tematyce z życia codziennego: odczytywanie czasu, temperatury, ważenie. Można przy tej okazji wykonać z dzieckiem tarczę zegarową z tektury i poszerzyć zabawę o aspekt praktyczny. W ten sposób w zabawę matematyczną mogą się włączyć rodzice, starsze rodzeństwo czy dziadkowie. Myślę, że nie bez powodu autorka zatytułowała książkę ''Zabawy z matematyką...''. Książka ma format A- 4. Jest przejrzysta i na pewno spodoba się dzieciom.
trudności z wykonywaniem działań w pamięci, problemy z zapamiętywaniem reguł, definicji, tabliczki mnożenia, problemy z opanowaniem terminologii, błędne zapisywanie i odczytywanie liczb wielocyfrowych (z wieloma zerami i miejscami po przecinku), przestawianie cyfr (np. 56-65),
Zabawy matematyczne uczą dzieci podstaw matematyki. Maluchy poznają dzięki nim pojęcia i działania matematyczne, ale uczą się też kategoryzować przedmioty, sortować je, tworzyć zbiory. Dzięki zabawom matematycznym dziecko kształtuje spostrzegawczość i logiczne myślenie. Sprawdź nasze propozycje, by uczyć dzieci matematyki na wesoło. Zabawy matematyczne to pierwszy krok do kształtowania zdolności matematycznych dziecka. Warto zacząć je wprowadzać w życie malucha jak najwcześniej. Nie chodzi jednak o zmuszanie dziecka do nauki, lecz o zabawy, które pomagają zrozumieć podstawowe pojęcia, zachęcają do logicznego myślenia oraz ułatwiają rozpoznawanie cyferek i figur geometrycznych. Przygotowaliśmy zabawy matematyczne dla dzieci w różnym wieku. Zaskoczą cię swoją prostotą i zainspirują do tego, aby przy różnych okazjach organizować gry i zabawy matematyczne dla dzieci. Mogą być urozmaiceniem każdego spaceru, a nawet kinderbalu. Spis treści: Zabawy matematyczne dla 4-latka i 5-latka Zabawy matematyczne dla 3-latków Zabawy matematyczne dla dwulatków Jak zachęcić dziecko do zabaw matematycznych? Zabawy matematyczne dla 4-latka i 5-latka Podczas najbliższego spaceru zbierzecie, listki, kwiatki, piórka, kamyczki. Potrzebne będą kamienie różnej wielkości i kształtów. Mogą być ogrodowe, kupione w jednym ze sklepów ogrodniczych. Jeśli pogoda nie sprzyja spacerom, a portfel zakupom, można zamiast kamieni wziąć np. guziki. Przygotujcie też pęczek patyków o różnej długości i grubości. W terenie można wykorzystać zabawy na piasku. Liczenie i układanie kształtów (zabawa kamykami/guzikami) Niech dziecko policzy, ile zebraliście kamyków. Spróbujcie układać z ich bardziej skomplikowane kształty. Pokaż, że jeśli ułożysz trójkąt, a potem dodasz kwadrat, to powstanie domek. Dwa kółka, dwa prostokąty i jest samochód. Uwaga! Z początku liczcie do 10. Gdy widzisz, że malec dobrze sobie z tym radzi, próbujcie dalej. Ale nic na siłę! Dwa plus jeden (zabawa kamykami/guzikami) Teraz możecie pobawić się w dodawanie: „Jeśli ja mam jeden kamyk, a ty dwa, to ile mamy ich razem? A jeśli ja teraz zabiorę tobie jeden, ile ci zostanie? Ile ja będę miała?”. Literki i cyferki (zabawy patyczkami) Jeśli uzbieracie cztery patyczki, możecie z innych ułożyć cyfrę 4. Powiedz: „Mamy dwa patyki długie i dwa krótkie. Ile jest razem?”. Gra w klasy (zabawa na piasku) Wyrysuj schemat (połączone kwadraty jeden nad drugim, boczne na ręce, podzielone koło jako głowa), wpisz w pola cyfry od 1 do 10. Rzucacie kamień, skaczecie po niego raz na jednej, raz na dwóch nogach, obrót i z powrotem. Dziecko ćwiczy liczenie, poznaje cyfry. Uwaga! Gra w klasy przy okazji trenuje koordynację ruchów i równowagę – to ważne dla prawidłowego rozwoju mózgu! Wzorki (zabawa kamykami, listkami, kwiatkami itp) Bawisz się podobnie jak z młodszym dzieckiem, ale wzory mogą już być troszkę trudniejsze, np. listek, listek, kamyk, piórko, listek, listek, kamyk, piórko itd. Poproś dziecko, by kontynuowało układ (z twoją pomocą). Potem zaproponuj, by wymyśliło własny wzór. Czego tu brakuje? (zabawa kamykami, listkami, kwiatkami itp) Potrzebujesz kilku różnych przedmiotów (np. kwiat, kamień, piórko, patyk, szyszka). Ułóż je w rzędzie, głośno je ze szkrabem nazwijcie, pozwól mu się przyjrzeć i zapamiętać. A teraz zagadka! Dziecko zamyka oczy, a ty w tym czasie zabierasz jedną z rzeczy. Dziecko otwiera oczy i zgaduje, czego brakuje. Potem zamieniacie się rolami. Liczbę i urozmaicenie przedmiotów zmieniaj w zależności od możliwości dziecka. Liczymy (zabawa kamykami, listkami, kwiatkami itp) Poproś dziecko, by podało ci cztery listki. Powiedz: „A teraz chcę dwa kwiatki i jedno piórko”. Zamieńcie się rolami – teraz dziecko ma cię prosić i sprawdzać, czy dobrze to robisz! Zabawy matematyczne dla 3-latków Przydadzą się wam kamienie lub guziki różnej wielkości i kształtów. Na spacerze zbierzcie listki, kwiatki, piórka oraz patyki. Wykorzystajcie piasek do zabaw matematycznych. Więcej czy mniej? (zabawa kamykami/guzikami) Pogrupuj kamyczki na dwa zbiory. W każdym ma być inna liczba kamyków, różnica powinna być wyraźna. Poproś dziecko, by pokazało, w której kupce jest ich więcej. A potem razem spróbujcie je policzyć. Może się uda. Uwaga! Trzylatek uczy się liczyć do trzech–pięciu, dalej będzie mu trudno. Podłużne czy okrągłe? (zabawa kamykami/guzikami) Pokaż kamienie o różnych kształtach i nazwij je: „Ten jest okrągły jak piłka, a ten podłużny jak samochód”. Zachęć dziecko, by podzieliło je na dwie kupki – z kamyków okrągłych i podłużnych. To ważna nauka segregowania według podobieństw! Jeśli bawicie się guzikami, segregujcie guziki na małe i duże, na czerwone, czarne, niebieskie itd. Figury i kształty (zabawa kamykami/guzikami) Ułóż z kamyków kółko. Nazwij je i pomóż dziecku ułożyć podobne. Zapytaj: „Które kółko jest większe, moje czy twoje?”. Potem układajcie trójkąty i kwadraty. Poproś dziecko, by ułożyło dwa kółka, następnie dwa kwadraty i powiedz: „Ja mam dwa kwadraty. Tyle samo co ty kółek”. Wprowadź pojęcie średni (zabawa patyczkami) Wskaż patyk, który jest dłuższy od tego i krótszy od tamtego. Pokaż, jak z trzech wybrać najdłuższy i najkrótszy. Pogrupujcie je na długie i krótkie. Ile jest w jednym zbiorze, ile w drugim? Kolorowe patyczki do liczenia segregujcie według barw. Co gdzie jest? (zabawa na piasku) Rysując, używaj pojęć: „obok”, „nad”, „pod”, „w środku”. Określanie położenia rzeczy względem siebie to ćwiczenie wyobraźni przestrzennej. Narysuj koło i poproś, by dziecko narysowało w jego środku mniejsze. Potem drzewo – niech umieści nad nim słońce i obok psa. Uwaga! Nie liczy się jakość rysunków (piesek na pewno nie będzie podobny do prawdziwego!), ale to, czy dziecko umie odpowiednio umieścić obiekt. Wzorki (zabawa kamykami, listkami, kwiatkami itp) Ułóż prosty wzór, np. kwiatek, listek, kwiatek, listek, kwiatek itd. Pokaż go dziecku, powtarzając głośno nazwy, by uświadomiło sobie powtarzalność wzoru. Poproś, by spróbowało go kontynuować. Jaki kształt? (zabawa kamykami, listkami, kwiatkami itp) Pokaż, że piórko może przypominać drzewo, a listek np. chmurkę. Zachęć swoje dziecko, by samodzielnie poszukało podobieństw. Łączymy w pary (zabawa kamykami, listkami, kwiatkami itp) Poproś: „Znajdź dwa takie same patyczki”, „Daj mi dwa duże kamienie”, „Wybierz dwa żółte kwiatki”. Uwaga! Obie te zabawy uczą trudnej sztuki porównywania, znajdowania różnic i wspólnych cech. To są umiejętności, które zaczynają się kształtować właśnie w tym wieku. Pomagają poznawać świat i zapamiętywać to, co dziecko widzi. Zabawy matematyczne dla dwulatków Tak jak w innych zabawach, tu także przydadzą się różne kamyki, guziki, krótkie i dłuższe patyczki, sosnowe igły, piasek. Można wykorzystać wykałaczki, zapałki lub patyczki do nauki liczenia (ze sklepu). Małe czy duże? (zabawa z kamykami/guzikami) Daj dziecku kilka kamieni (na początek trzy, cztery) wyraźnie różniących się wielkością. Pokazuj je, mówiąc: „Ten kamyk jest duży, ten mały”, „Ten jest największy, a ten najmniejszy”. Ułóż kamienie od największego do najmniejszego, opisując, co robisz. Poproś dziecko, by pokazało, który kamyk jest duży, a który mały. Ułóżcie je według wielkości. Budujemy wieżę (zabawa z kamykami/guzikami) Pokaż, jak z trzech, czterech płaskich kamieni zbudować wieżę, niech dziecko zrobi swoją. Musi wybrać kamyki według wielkości, od największego, inaczej wieża się zawali – pomóż mu. Uwaga! Twoje dziecko może mieć kłopot z porównywaniem wielkości, ale powinno już zacząć je rozróżniać. Będzie pewnie chętniej burzyło wieżę, niż budowało, ale to, co do niego mówisz, i tak zapamięta. I już wkrótce wykorzysta! Krótkie czy długie? (zabawa z patykami) Porównujcie długość patyczków. Poproś, by dziecko z dwóch różnych wybrało np. dłuższy. Możecie też porównywać grubość patyków. Rysowanie (zabawa na piasku) Niech dziecko swobodnie maże kreski, a potem próbuje odwzorować zamknięty kształt typu koło, trójkąt, kwadrat. Ciężkie czy lekkie? (zabawa listkami i kamykami) Wybierz spory kamień oraz listek. Powiedz: „Zobacz, listek jest lekki, a kamień ciężki”. Daj dziecku do rączki, by poczuło różnicę. Wybierz jeszcze kilka takich par. Razem oceniajcie, co jest ciężkie, a co lekkie. Tutaj znajdziesz materiały, które pomogą ci organizować atrakcyjne zabawy matematyczne dla dzieci: Jak zachęcić dziecko do zabaw matematycznych? Do pierwszych zabaw matematycznych zachęcaj dziecko, zanim skończy dwa latka – ale tylko jeśli mu się to podoba. Taki brzdąc może mieć trudności ze skupieniem uwagi na tyle, by z nich skorzystać. Niektórzy twierdzą, że matematyki można uczyć nawet niemowlęta – do tego celu służy np. metoda Domana. Pamiętaj jednak, że każde dziecko rozwija się w innym tempie. Zabawy matematyczne i czas ich trwania dostosowuj do możliwości swojego dziecka. Zbyt trudne zniechęcają. Dwulatek może mieć dość już po 10–15 minutach zabawy. Dla niego to już sporo i wystarczy! Zawsze, gdy bawisz się z dzieckiem w zabawy matematyczne: Chwal i podziwiaj jego osiągnięcia. Starszakowi możesz zaproponować zabawę na punkty. Za rozwiązaną zagadkę przyznajesz jeden punkt. Za pięć punktów maluch może mieć życzenie. Ale bawcie się tak, tylko jeśli dziecko lubi takie wyzwania. Mów prosto zrozumiale, nie zalewaj potokiem wyjaśnień. Jeśli widzisz, że dziecko nie jest gotowe na te zabawy, woli się wybiegać – daj mu spokój. Wróć do zabaw matematycznych za kilka dni. Sprawdź także: Każde dziecko rodzi się ze zdolnościami matematycznymi! Zagadki i gry matematyczne dla dzieci Znajdź różnice – kształtowanie spostrzegawczości
Omawianie fragmentu powieści detektywistycznej w klasie 6 stało się przyczyną do przeprowadzenia ciekawych lekcji języka polskiego z matematyką w tle. To jeden z tych cyklów zajęć, które rodzą się w głowie nauczyciela „ad hoc” i toczą się, tworząc kolejne ogniwa lekcji. Docelowo łączą się w zgrabną i efektywną całość.
W pierwszych klasach podstawówki dzieci zaznajomione są z podstawowymi działaniami arytmetycznymi, których znajomość przyda im się na całe życie. Nauka zaczyna się od omówienia dodawania i odejmowania, następnie uczniowie opanować muszą mnożenie i dzielenie. Są to cztery najbardziej podstawowe działania arytmetyczne, w których występują minimum dwie liczby, czyli elementy działania arytmetycznego. Stopień trudności wzrasta, kiedy do zadań zaczynają być wprowadzane nawiasy, a same obliczenia, zwane wyrażeniami, tworzone są z rozbudowanej liczby elementów. W tym momencie kluczowe jest opanowanie kolejności wykonywania działań. Jaka jest kolejność wykonywania działań na poziomie klasy 4? Prawidłowa kolejność wykonywania działań, której dzieci uczą się na poziomie klasy 4, przedstawia się następująco: działania w nawiasach, mnożenie i dzielenie – z zachowaniem kolejności od lewej do prawej, dodawanie i odejmowanie – z zachowaniem kolejności od lewej do prawej. Przykład: 5 + 19 – (13+2) = 9, ponieważ zaczyna się od działania w nawiasie, gdzie 13 plus 2 daje 15. Następnie przeprowadzamy dodawanie 5 plus 19, które daje 24. Od 24 odejmujemy liczbę 15, którą uzyskaliśmy jako wynik w nawiasie, czyli 24 odjąć 15 daje 9. Najpierw mnożenie czy dzielenie? Pamiętaj o kolejności wykonywania działań Kolejność wykonywania działań w przypadku wyrażenia z kilkoma elementami może sprawiać trudność. Pamiętać należy, że zawsze pierwszym krokiem jest wykonanie działania w nawiasie. Potem przejść należy do mnożenia i dzielenia. Te działania są sobie równe, dlatego wykonujemy je od pierwszego wyrażenia od strony lewej, idąc do prawej. Przykład: 6 x 7 x 10 : 3 = 140, ponieważ jako pierwsze mnoży się 6 razy 7, a uzyskany wynik to 42. 42 pomnożone jest razy 10, uzyskany wynik daje 420. Ta liczba, czyli 420, na koniec podzielona zostaje przez 3, dając 140. Kolejność wykonywania działań. Co najpierw dodawanie czy odejmowanie? Podobna wątpliwość, jak przy kolejności mnożenia i dzielenia, ma miejsce również przy kolejności dodawania i odejmowania. W tym przypadku również te działania są sobie równe, dlatego wykonujemy je po kolei od strony lewej do prawej. Przykład: 19 – 7 + 13 + 6 = 31, ponieważ zacząć należy od działania 19 odjąć 7, co daje 12. Do 12 dodajemy 13, co daje sumę 25. W ostatnim działaniu do 25 dodajemy 6, a suma wynosi 31. Dalsza część artykułu pod materiałem wideo Jak poprawnie obliczyć działanie? W zrozumieniu i zapamiętaniu tego, jak poprawnie obliczyć działanie przydatny jest opisowy przykład, uwydatniający istotność zachowania odpowiedniej kolejności. Wyobraźmy sobie sytuację, kiedy od poniedziałku do piątku dziecko dostaje od babci 3 kredki za odrobienie lekcji każdego dnia. W sobotę w nagrodę za cały tydzień sumiennej pracy babcia daje mu dodatkowo 5 kredek. W sobotę dziecko będzie miało 20 kredek. W działaniu wygląda to następująco: 3 x 5 + 5 = 15 + 5 = 20 W sytuacji jednak kiedy babcia dałaby dziecku w niedzielę 5 kredek na zachętę przed tygodniem szkoły, a następnie każdego dnia dostawałoby 3 kredki, to działanie zapisać można następująco: 5 + 3 x 5 = ?? Kluczowe jest tutaj zastosowanie kolejności wykonywania działań. Wynik to oczywiście również 20 kredek, ponieważ najpierw mnożymy, a potem dodajemy. Jednak, jeśli ktoś wykonałby to działanie z pominięciem odpowiedniej kolejności, zaczynając od lewej do prawej strony, czyli od dodawania, to otrzyma błędny wynik wynoszący 40. Kolejność wykonywania działań w starszych klasach podstawówki Podkreślić należy, że omówiona kolejność wykonywania działań odnosi się do poziomu klasy 4. W kolejnych klasach podstawówki uczniowie poznają potęgowanie i pierwiastkowanie. Generalna kolejność wykonywania działań, którą poznają starsze dzieci, to: działania w nawiasach, potęgowanie i pierwiastkowanie, mnożenie i dzielenie, dodawanie i odejmowanie.
10 zł zniżki na pierwsze zamówienie w aplikacji: pobierz i odbierz zniżkę Sprawdź regulamin. Matematyka z plusem 4. Zeszyt ćwiczeń podstawowych. Szkoła podstawowa - Zarzycki Piotr, Tokarska Mariola, Orzeszek Agnieszka, w empik.com: . Przeczytaj recenzję Matematyka z plusem 4.
Przedstawiam bardzo dobrą stronę z zadaniami online z matematyki dla szkoły podstawowej - warto tu zaglądnąć i poćwiczyć troszeczkę. Samemu decydujesz o trudności zadania :) Jak wejdziemy na liczby całkowite/Arytmetyka, będziemy mieć testy i zadnia z dodawania, odejmowania, mnożenia i dzielenia również sposobem pisemnym - klik Jak wejdziemy na ułamki/Określ, to poćwiczymy odczytywanie ułamków z danych figur, zaznaczanie danych ułamków na figurach, zaznaczanie ułamków na osi liczbowe i wiele innych opcji - klik Dodawanie i odejmowanie uł. zwykłych - klik Natomiast jak wejdziemy na pojęcia/Czas, to mamy odczytywanie czasu z zegara, obliczanie czasu, jaki upłynął, zamiana jednostek minut i godzin, również w oraz strefy czasowe - klik Jest jeszcze geometria/Geometria w której mamy pola i obwody figur płaskich oraz pola o objętości brył przestrzennych - klik ...............
Kiedy uczniowie wchodzą do klasy 4, jedną z pierwszych rzeczy, które uczą się w matematyce, jest kolejność wykonywania działań. Ta umiejętność pomaga im rozwiązywać skomplikowane zadania. W klasie 4 uczniowie uczą się, że najpierw wykonuje się działania w nawiasach, a następnie mnożenie lub dzielenie.
Opinie naszych użytkowników Pragnę serdecznie podziękować za wspaniałe pomysły i ciekawe materiały z których korzystam już od jakiegoś czasu w pracy z dziećmi. Wasza strona jest po prostu fantastyczna(...) Agnieszka K. Wczoraj byłam bezradna jak pomóc mojemu dziecku w nauce tabliczki mnożenia. A dzisiaj jestem szczęśliwa, że dzięki Pani pomocy, mojemu dziecku udało się ruszyć z miejsca. Beata z Łodzi Bardzo często korzystam z serwisu Jest świetny, kapitalny, rozwija wyobraźnię, kreuje osobowość, rozwija zainteresowania :) Dziękuję. Elżbieta J., mama i nauczycielkaCzytaj inne opinie » W 2020 r. otrzymał NAGRODĘ GŁÓWNĄ w konkursie ŚWIAT PRZYJAZNY DZIECKU, w kategorii: Internet. Organizatorem konkursu jest: Komitet Ochrony Praw Dziecka. Na skróty: Na prośbę rodziców i nauczycieli - użytkowników naszego serwisu, począwszy od roku szkolnego 2012/2013 przystępujemy do opracowywania ćwiczeń dla klas 4. W tym dziale znajdziesz arkusze mające za zadanie pomóc uczniom klasy 4 utrwalić wiedzę i umiejętności matematyczne. Jeśli szukasz innych materiałów dotyczących matematyki, przeznaczonych dla klas młodszych lub materiałów bardziej uniwersalnych, znajdziesz je tu: Matematyka dla dzieci Nauczyciele korzystają w szkołach z przeróżnych podręczników i w związku z tym materiał programowy - w zależności od rodzaju przerabianego podręcznika - jest różnie realizowany. Między niektórymi podręcznikami są pewne różnice w zakresie przekazywanych treści. Postaramy się jednak tak przygotowywać i opisywać ćwiczenia, by można było szybko znaleźć to, co jest potrzebne i by ćwiczenia te stanowiły pomoc dla uczniów. Na początek będziemy się opierać na następujących podręcznikach: M. Dobrowolska, M. Jucewicz, P. Zarzycki "Matematyka z plusem", GWO H. Lewicka, M. Kowalczyk "Matematyka wokół nas", WSiP L. Klama, E. Szelecka i in. "Matematyka z klasą", Wydawnictwo LektorKlett No to - ruszamy :) TYSIĄCE materiałów edukacyjnych ZERO irytujących treści i reklam dla rodzica: SPOKÓJ I WYGODA dla dziecka: RADOŚĆ z własnych osiągnięć BEZPIECZNA NAUKA i ZABAWA w jednym :) Bo KAŻDE dziecko jest mądre i inteligentne. Trzeba tylko dać mu szansę. ↑Do góry
Kolejna szalona historia z sympatycznymi zwierzakami jest świetną lekturą, która mimochodem przemyca masę matematycznych zagadnień (dodawanie, mnożenie, dzielenie, liczebniki porządkowe, problemy matematyczne i strategie ich rozwiązywania). Na ilustracjach jest tłoczno, w fabule dynamicznie, a w trakcie lektury matematycznie i zabawnie.
Klasy 4, 5 i 6 to ważne czasy dla tych z Was, którzy obecnie uczęszczają do szkoły podstawowej. Na tym etapie zacząłeś uczyć się różnego rodzaju materiałów, które przygotują Cię do kolejnego poziomu edukacji, czyli gimnazjum. Jedną z lekcji, które musisz uważnie wykonać, jest matematyka. W gimnazjum pojawia się wiele nowych materiałów z różnego rodzaju materiałów w klasach 4, 5 i 6. Jednym ze sposobów przygotowania się do materiałów jest uważne ćwiczenie zadań matematycznych w klasach 4, 5, 6. Te pytania dotyczące ćwiczeń matematycznych mogą ci pomóc również podczas egzaminów, wiesz, egzaminów wielokrotnego wyboru lub esejów. Poniżej możesz zobaczyć i wykonać różne rodzaje ćwiczeń matematycznych dla klasy 4, 5, 6, które z pewnością mogą ci pomóc. Problemy matematyczne dla klas 4, 5, 6 Poniżej znajdują się pytania praktyczne, które możesz wykonać, aby dodatkowo zwiększyć swoją wiedzę na temat różnych materiałów. Zacznijmy od zadania matematycznego w czwartej klasie. Zadanie matematyczne dla klasy 4Problem nr 1 Pizzę rozdano Ani, Budi, Cindy i Dodo. Ani i Budi otrzymały ¼ akcji, a Cindy 3/8 części. Porcja pizzy otrzymana przez dodo to ... Rozwiązanie: Pizzę rozdano Ani, Budi, Cindy i Dodo. Całą pizzę uważamy za jedną część, tak więc otrzymujemy 1 - ¼ - 3/8, najpierw zrównaj mianownik. = 8/ 8 – 2/ 8 – 3/ 8 = 3/ 8 Problem nr 2 Najprostszą formą ułamkową 20/60 jest ... Rozwiązanie: 20/ 60 = 20/60 : 20/ 60 = 1/3 Problem matematyczny 5 stopniaProblem nr 1 Jaka jest wartość 100 - 9,62? Rozwiązanie: 100 – 9,62 = (100 + 0,38) – (9,62 + 0,38) = 100,38 – 10,00 = 90,38 Problem nr 2 Jaka jest wartość 1/5 + 3/5? Rozwiązanie: 1/ 5 + 3/ 5 = 1+3/ 5 = 4/ 5 Problem matematyczny 6 stopniaProblem nr 1 Wynik (-31) + (-56) to… Rozwiązanie: Zwróćmy najpierw uwagę, że obie są liczbami ujemnymi. Jeśli dodasz do siebie liczby ujemne, wynik również będzie liczbami ujemnymi. Uzyskane (-31) + (-56) = (-31) – 56 = -87 Problem nr 2 Wartość (-8) - (-10) to… Rozwiązanie: Jeśli przed znakiem minus znajduje się znak odejmowania, operacja obliczeniowa zmieni się na dodawanie, tak aby uzyskać (-8) – (-10) = … -8 + 10 = 2 Wciąż za mało? Następnie możesz skorzystać z jednej z platform edukacyjnych online czyli Smart Class. Uczenie się problemów matematycznych z inteligentną klasą Smart Class to platforma do nauki online który oferuje przystępne cyfrowe rozwiązanie do nauki 360 ° smartfonie , tablety i komputery (oparte na sieci i aplikacji) przez uczniów, nauczycieli i rodziców podczas procesu nauczania i uczenia się. Obsługiwane przez zintegrowany system do monitorowania i wspierania rozwoju uczenia się uczniów. Skorzystaj z 3 metoda uczenie się na inteligentnych zajęciach, które mogą pomóc ci lepiej zrozumieć różne materiały do ​​przestudiowania, a mianowicie: Kompleksowe wyjaśnienie materiału w postaci audiowizualnych, animowanych filmów i elektronicznych podręczników (e-book).Wzmocnienie koncepcji poprzez różne pytania praktyczne, takie jak HOTS (Umiejętności myślenia wyższego rzędu), Pytania i odpowiedzi oraz VBQ (Pytanie oparte na wartości).Ocena procesu uczenia się za pomocą różnych pytań testowych, takich jak testy adaptacyjne, pytania wielokrotnego wyboru (MCQ) i pytania egzaminacyjne (Praca pisemna). W przypadku pakietu do nauki klasa smart udostępnia 2 rodzaje pakietów, a mianowicie zwykłe i MBG. Regular to zwykły program Smart Class, który oferuje różne udogodnienia i korzyści dla zajęć edukacyjnych online . MBG, co oznacza Gwarancja zwrotu pieniędzy to program Smart Class, który oferuje zwrot pieniędzy, jeśli nie ma podwyższenia ocen uczniów, oczywiście pod pewnymi warunkami. Możesz zdecydować się na naukę prywatnie lub w grupach, a także nie musisz już wahać się co do jakości nauczyciela i dostarczonego materiału, ponieważ wszystko zostało starannie i starannie dobrane i ułożone. Dostępny jest również produkt PROBLEM, który zawiera różne rodzaje pytań praktycznych, które możesz wykonać, aby pogłębić swoje opanowanie wiedzy. W połączeniu z funkcją ZAPYTAJ, która może odpowiadać na różne pytania dotyczące pytań lub materiałów, które nie zostały opanowane. Połączenie tych dwóch naprawdę Ci pomoże. Zdobądź proces uczenia się, a także najlepszy materiał dla swojego dziecka. Na co czekasz? Uczmy się z Smart Class!
\nproblemy z matematyką w klasie 4
Produkt przeznaczony jest dla uczniów szkoły podstawowej, którzy mają specyficzne problemy z nauką matematyki. Program obejmuje ćwiczenia z zakresu dodawania, odejmowania, mnożenia. Uczniowie z jego pomocą nauczą się m.in. klasyfikacji figur geometrycznych, prostych równoległych i prostopadłych a także przecinających. Zobacz więcej!
Problem dyskalkulii, w odróżnieniu od dysleksji jest stosunkowo mało uświadomiony i zbadany, pomimo tego, że trudności w matematyce wcale nie są rzadkie wśród uczniów każdego typu szkół. Dysleksja rozwojowa jest strukturalnym zaburzeniem zdolności matematycznych które mają specyficzny charakter tzw. wycinkowy, bez ograniczenia ogólnych zdolności poznawczych. Trudności te spowodowane są przez dysfunkcję pewnych obszarów mózgu. Dyskalkulia jest przejawem specyficznych trudności w uczeniu się matematyki a nie przejawem ogólnych trudności. Dziecko z trudnościami ogólnymi przejawia kłopoty mniej więcej na tym samym poziomie, potrzebuje więcej czasu na naukę. W testach inteligencji ma wyniki poniżej średniej. Trudności w nauce nie podlegają gwałtownym zmianom, są równomierne a w przypadku specyficznych trudności w uczeniu się podlegają wahaniom, czasami bardzo wyraźnym, uczeń potrafi być błyskotliwy a za chwile liczyć na palcach w celu wykonania prostego działania matematycznego. Uczeń taki charakteryzuje przeciętnym a często ponadprzeciętnym lub wysokim poziomem intelektualnym, równocześnie ma jednak trudności z pewnymi procesami myślowymi ( z procesami poznawczymi). Bardzo jasną i konkretną definicją jest zaproponowana w 2001r. przez brytyjski Department for Education and Skills określającą dyskalkulię jako: „Stan, który dotyka zdolności nabywania umiejętności arytmetycznych. Dyskalkuliczni uczniowie mają trudność z rozumieniem zwykłego pojęcia liczby, brakuje im naturalnego chwytania liczb, mają problemy z uczeniem się faktów liczbowych i procedur. Nawet jeśli wypracują poprawną odpowiedź lub zastosują właściwą metodę, to mogą to robić mechanicznie i bez pewności.” Uczeń z dyskalkulią:• Często wyobraża sobie liczby jako mgliste zbiorowości jedynek• Ma duże trudności z rozpoznaniem jakiejkolwiek struktury wewnętrznej w liczbach • Nie pamięta w jaki sposób liczby są zapisywane • Z trudem czyta liczby wielocyfrowe• Nie rozumie struktury dziesiętnej systemu liczbowego • Przejawia trudności z określeniem miejsca dziesiętnego liczby • Czytanie liczb wielocyfrowych sprawia im trudność• Czuje lęk przed matematyką • Wykonywanie działań nawet prostych wymaga bardzo wiele wysiłku• Często ponosi porażkę pomimo dużych chęci • W konsekwencji traci motywacje do nauki matematyki, czuje nie gorszy od innych uczniów, traci wiarę w swoje możliwości Oczywiście występowanie u dziecka /ucznia tych trudności, nawet kilku lub większości nie oznacza automatycznie, że dziecko ma dyskalkulie ale należy skierować swoje kroki do poradni psychologiczno - pedagogicznej w celu umówienia się na diagnozę, która będzie wnikliwymi wieloetapowym badaniem. Trudności związane z dyskalkulia rozwojową przejawiają się nie tylko w trudnościach ściśle związanych z dziedzina nauki jaką jest matematyka często są one połączone i bardzo silnie związane z:• Trudnościami z czytaniem i rozumieniem: - Dziecko ma trudność ze zrozumieniem języka matematycznego nawet jeśli bardzo dobrze czyta - Przy zadaniach bardzo długich, zapomina przed skończeniem czytania co było na początku - Pomyłki następują podczas odczytywania liczb podanie wyglądających np 3 i 8 oraz 6 i 9- Pomija przestrzenie pomiędzy liczbami 5 24 odczytuje jako 524- Trudność sprawia czytanie liczb wielocyfrowych np 45007, 1008, 8032- Ma trudność w rozpoznawaniu i stosowaniu odpowiednich symboli ( dodawania, odejmowania, mnożenia oraz dzielenia)- Ma problem z odczytywaniem map, danych z wykresów i tabeli• Trudności z pisaniem:- Błędnie kopiuje np. z tablicy liczby, figury geometryczne - Pisze symbole, liczby często zamieniając je i odwracając kolejność- Nie potrafi napisać z pamięci liczb, obliczeń czy figur geometrycznych - Ma trudność z poprawym zapisaniem liczby zawierającej więcej niż jedną cyfrę ( np zgubi zero pisząc dwa tysiące osiem jako 208, piętnaście zapisze jako 51)• Problem z rozumowaniem pojęć i symboli: - Trudność z rozumieniem symboli matematycznych - Problem z oceną miejsca dziesiętnego liczby - Problem z odczytywaniem danych z układu współrzędnych - Trudności z zapamiętaniem wzorów potrzebnych do obliczenia np. pola figury - Problem z rozumieniem pojęć związanych z wagą, przestrzenią, kierunkiem lub czasem- Problem z rozumieniem pojęć takich jak dużo, więcej i najwięcej - Trudność z powiązaniem terminów matematycznych z ich skórami np. Kilogram - kg- Problem z zastosowaniem matematyki w zadaniach z treścią• Problem z szeregowaniem liczb i faktami matematycznymi:- Trudności z szeregowaniem liczb ze względu wartość np czy 13 poprzedza 14, czy następuje po 14 - Problem z liczeniem wstecz np. Co cztery zaczynając od 100- Problem z sekwencjami liczbowymi, np czy 66 to więcej o to o 4 więcej od 71- Trudności z zapamiętaniem tabliczki mnożenia - Problem z obliczeniami pamięciowymi, które są spowodowane kłopotami z pamięcią krótkotrwała• Problem ze złożonym myśleniem:- Uczeń charakteryzuje się sztywnością w myśleniu czyli przejawia trudność w wybraniu właściwej strategii w rozwiązywaniu problemów i w zmianie strategii jeśli ta jest nieskuteczna - Problem z następstwem kolejnych działań matematycznych - Problem z oszacowaniem przybliżonych obliczeń - Trudności z planowaniem np. planowanie jak zadanie rozwiązać jeszcze przed przystąpieniem do obliczeń- Trudność z przechodzeniem z poziomu konkretów do poziomu abstrakcyjnego myślenia • Cechy ogólne charakterystyczne dla osób z dyskalkulią rozwojową:- Odczuwa lęk na samą myśl, że musi zająć się matematyką - Przejawia brak zaufania do własnych kompetencji matematycznych - Często rozwija strategie tzw. wyuczonej bezradności - Wolniej pracuje i popełnia więcej błędów przez co czuje się „gorszy” od innych uczniów w klasie - Oddaje prace niestaranne, pokreślone- Niechętnie pracuje w grupach - Ma niską samoocenęProblemy w nauce matematyki mogą mieć różne podłoże dlatego też dokonanie trafnej diagnozy jest niezwykle ważne i bardzo trudne ale niezwykle ważne dla dalszej edukacji matematycznej ucznia. Dobór testów do badania zależy od psychologa prowadzącego badanie w poradni psychologiczno - pedagogicznej do której udadzą się rodzice wraz z dzieckiem u którego podejrzewają tego typu trudności. Trzeba pamiętać, że ważne jest określenie możliwości ucznia a nie tylko poziomu osiągniętych wiedzy i umiejętności szkolnych w zakresie matematyki. Niepowodzenia w zakresie nauki matematyki mogą być spowodowane różnymi czynnikami. Diagnoza ma za zadanie określić czy problemy z nauce matematyki wynikają z dyskalkulii czy innych przyczyn, takich jak:• Zaległości szkolne które uniemożliwiają zrozumienie i realizacje kolejnych tematów • Problemów z czytaniem ze zrozumieniem • Problemy grafomotoryczne ( popełnianie błędów przy odczytywaniu zapisanych przez siebie działań i w związku z tym niemożność wykonania prawidłowych obliczeń)• Zaburzenia analizy i syntezy wzrokowej ( utrudniają np. naukę geometrii)• Niska odporność na stres• Problemy z koncentracja uwagi• Problem z pamięcią długoterminowąNiektórzy uczniowie mogą przejawiać wyżej wymienione trudności jako współwystępujące z dyskalkulią, ale mogą też występować niezależnie od niej. W tym przypadku uczeń powinien pracować nad poprawą zaburzonych stref i nadrabiać w ten sposób zaległości szkolne. Psycholog podczas badania powinien zebrać dodatkowe informacje o uczniu i jego trudnościach, aby prawidłowo rozpoznać przyczyny problemów szkolnych. Dlatego, tez w poradni psychologicznej podczas diagnozy przeprowadza się badania nie tylko pod kątem dyskalkulii, w o wiele szerszym aspekcie pozwalającym poznać zdolności ucznia pod kątem:• Poziomu rozwoju intelektualnego• Poziomu funkcji percepcyjno - motorycznych • Funkcjonowania emocjonalnego i społecznego • Określenie poziomu opanowania umiejętności szkolnych, czytania, pisania, liczenia • Zebrania informacji od rodziców i nauczycieli ( wywiady, kwestionariusze)• Obserwacji dziecka podczas pracy • Analizy wcześniejszej dokumentacji ( poprzednie badania ucznia, wyniki w nauce, analiza zeszytów ucznia )Efektem wieloetapowej i wnikliwej diagnozy jest opinia wydana przez Poradnie Psychologiczno - Pedagogiczną, opinia składa się z opisu wyników testów przeprowadzonych podczas badania a w szczególności dostosowań wymagań edukacyjnych dla konkretnego ucznia, nauczyciele dzięki temu mogą w odpowiedni sposób pracować z uczniem z dyskalkulią i pomagać mu na poszczególnych etapach edukacji. W opinii również przedstawione są inne formy wsparcia dla ucznia z specyficznymi trudnościami w nauce skierowane do rodziców. Najważniejszy przekaz dla rodzica to „Wspieraj!!!!! Najważniejsze, abyś wspierał swoje dziecko, które przez problemy czuje się zawstydzone.”
Zadanie 4.6. Adam i Basia w czasie wycieczki do Krakowa kupowali pamiątkowe magnesy w tym samym sklepie. Cena jednego magnesu z widokiem Wawelu była równa 2,50 zł, a cena jednego magnesu ze smokiem wawelskim 4,50 zł. Adam kupił magnesy z widokiem Wawelu i magnesy ze smokiem wawelskim, łącznie 12 sztuk.
W tym dziale znajdziesz dziesiątki quizów, ćwiczeń i zadań z matematyki obejmujących swym zakresem cały program nauczania klasy 4. Jeśli więc jesteś uczniem tej klasy i masz trudności z jąkać partią materiału idealnie trafiłeś. Możesz tu wszystko przećwiczyć bez opłat i rejestracji. Wystarczy wybrać interesujące Cię ćwiczenie i możesz zabierać się do pracy. Po udzieleniu odpowiedzi zobaczysz komunikat czy dane zadanie zostało wypełnione poprawnie czy nie, a po rozwiązaniu całego testu zobaczysz podsumowanie ze wszystkimi zaznaczonymi przez ciebie odpowiedziami i wskazaniem, które odpowiedzi są poprawne. Możesz to podsumowanie pobrać jako PDF, lub wrócić do niego po kliknięciu w link. Zadania z matematyki dla klasy 4 obejmują między innymi mnożenie i dzielenie. Podzieliliśmy tu zadania na mnożenie w zakresie do 200, 500 a nawet do 100. Dlatego zależnie od omawianego materiału możesz na bieżąco wszystko przećwiczyć w domowym zaciszu. Podobny podział ćwiczeń zrobiliśmy dla dzielenia – i w tym przypadku możesz ćwiczyć stopniowo, bez rzucania się od razu na głęboką wodę. Kolejnym działem z zadaniami, który dla was przygotowaliśmy to figury geometryczne, gdzie możecie przećwiczyć obliczanie pól i obwodów podstawowych figur. Następnie, w dziale działania na liczbach znajdziecie quizy na kolejność wykonywania działań matematycznych z nawiasami i bez, przy dodawaniu i odejmowaniu. Następny dział to system zapisywania liczb gdzie przećwiczyć można zapisywanie liczb rzymskich jako arabskie, lub liczb arabskich jako rzymskie. Do tego dodaliśmy quizy z przeliczania miar długości – centymetrów na milimetry i odwrotnie. W ostatnim dziale przećwiczyć możecie podzielność liczb na zadaniach takich jak wskazywanie liczb parzystych i nieparzystych, odnajdywanie liczb podzielnych przez wskazaną cyfrę, itp. Są tu zadania z otwartą odpowiedzią i testy wielokrotnego wyboru, ćwiczenia na analizę obrazka i na liczenie w pamięci. Znajdziesz tu wszystko czego potrzebujesz aby przećwiczyć materiał z matematyki obowiązkowy dla uczniów klasy 4.
\n \n problemy z matematyką w klasie 4
Chociaż subitizing, (szybka ocena liczebności w zakresie od 1 do 4, który nie działa u osób z dyskalkulią rozwojową) u osób z lękiem jest nietknięty (co wyklucza u tych osób dyskalkulię), to powyżej tego zakresu pojawiają się problemy — lęk przed matematyką hamuje dostęp do zmysłu liczby
Karty pracy dla uczniów mających trudności z uczeniem się matematyki Przekazujemy Państwu zestaw kart pracy z matematyki przeznaczonych dla uczniów mających trudności z nauką matematyki do klasy VI. Jest to kontynuacja materiału zamieszczonego na naszej stronie w kwietniu 2021 r. do kl. IV i w październiku 2021 do klasy V. Pliki do pobrania: Karty pracy dla uczniów mających trudności z nauką matematyki Przykład kształcenia kompetencji kluczowych i wdrazania elementów doradztwa zawodowego na lekcjach matematyki Ćwiczenia z matematyki dla klas II-III gimnazjum Przekazujemy Państwu zestaw kart pracy z matematyki do pracy z uczniem z niepełnosprawnością intelektualną w stopniu lekkim w klasie II-III szkoły gimnazjalnej (kontynuacja opracowania – Ćwiczenia z matematyki- klasa I). Zadania sprawdzają umiejętności określone w wymaganiach ogólnych i szczegółowych aktualnie obowiązującej podstawy programowej i są dostosowane do możliwości ucznia z niepełnosprawnością intelektualną w stopniu lekkim. Karty pracy mogą służyć jako: ćwiczenia na lekcjach, zadania domowe i dodatkowe, utrwalanie wiedzy i umiejętności. Plik do pobrania: Ćwiczenia Sprawdziany w klasach IV, V, VI do wspólnej kartoteki Zamieszczone poniżej sprawdziany do klasy IV, V, VI szkoły podstawowej przewidziane są do przeprowadzenia w II półroczu odpowiednio klasy IV, V, VI w bieżącym roku szkolnym do aktualnie obowiązującej „starej” podstawy programowej z matematyki. Zostały one skonstruowane do wspólnej kartoteki, co umożliwia porównanie stopnia opanowania tych samych istotnych do opanowania w szkole podstawowej umiejętności. Narzędzia powstały podczas 15-godzinnego kursu doskonalącego KD-11 prowadzonego przez konsultanta edukacji matematycznej Jadwigi Pieczywek w roku szkolnym 2016/2017. Autorki opracowania: Banasik Jadwiga Kalska Danuta Piekutowska Justyna Sokołowska Elżbieta Świderska Małgorzata Wierciszewska Bożena Zawistowska Ewa Pliki do pobrania: Sprawdzian z matematyki w Sprawdzian z matematyki w klasie V Sprawdzian z matematyki w Sprawdzian „na wejście” do szkoły ponadgimnazjalnej i na koniec klasy pierwszej do wspólnej kartoteki Zamieszczone poniżej sprawdziany do klasy I i II szkoły ponadgimnazjalnej przewidziane są do przeprowadzenia „na wejście” do szkoły ponadgimnazjalnej (początek klasy I) oraz pod koniec klasy I. Obydwa sprawdziany badają te same istotne umiejętności z aktualnie obowiązującej „starej” podstawy programowej z matematyki. Zostały one skonstruowane do wspólnej kartoteki, co umożliwia porównanie stopnia opanowania tych samych ważnych do opanowania umiejętności. Narzędzia powstały podczas 15-godzinnego kursu doskonalącego KD-11 prowadzonego przez konsultanta edukacji matematycznej Jadwigi Pieczywek w roku szkolnym 2016/2017. Autorki opracowania: Godlewska Janina Kraujutowicz Urszula Wierciszewska Katarzyna Pliki do pobrania: Sprawdziany szkoła ponadgimnazjalna Scenariusze lekcji matematyki w szkole ponadgimnazjalnej z wykorzystaniem elementów oceniania kształtującego W załączeniu scenariusze lekcji opracowane na spotkaniach Klubu Aktywnych Matematyków w roku szkolnym 2016/2017. Wersje wstępne scenariuszy opracowały: Postać iloczynowa funkcji kwadratowej – Anna Borawska Wzory Viete’a. Zastosowanie wzorów Viete’a w zadaniach – Anna Sacharczuk Uczestnicy KAM: Bogdan Henryk Bacławski, Anna Borawska, Grażyna Borawska, Beata Jabłonowska, Dorota Kozioł, Scholastyka Kulczewska, Anna Sacharczuk, Agata Siwik, Elżbieta Szleszyńska, Ewa Małgorzata Szymańska. KAM prowadzi konsultant edukacji matematycznej ODN w Łomży – Jadwiga Pieczywek. Pliki do pobrania: Ciągi - scenariusz Postać iloczynowa funkcji kwadratowej Wzory Viete'a Ćwiczenia z matematyki klasa I gimnazjum Przekazujemy Państwu zestaw kart pracy z matematyki do pracy z uczniem z niepełnosprawnością intelektualną w stopniu lekkim w klasie I szkoły gimnazjalnej. Zadania sprawdzają umiejętności określone w wymaganiach ogólnych i szczegółowych aktualnie obowiązującej podstawy programowej i są dostosowane do możliwości ucznia z niepełnosprawnością intelektualną w stopniu lekkim. Karty pracy mogą służyć jako: ćwiczenia na lekcjach, zadania domowe i dodatkowe, utrwalanie wiedzy i umiejętności. Publikacja powstała w latach 2015-2016 w ramach Klubu Aktywnych Matematyków działającego w ODN w Łomży pod kierunkiem Jadwigi Pieczywek w składzie: Elżbieta Chojnowska, Dorota Daniszewska, Wanda Kalska - Brulińska, Dorota Karwowska, Alicja Lemańska, Iwona Polak, Monika Rong, Monika Sikorska, Anna Stachowska, Krystyna Syrowik, Katarzyna Małgorzata Wierciszewska. Pobierz plik Sprawdziany diagnostyczne z matematyki - szkoła ponadgimnazjalna Zamieszczamy narzędzia z badań diagnostycznych przeprowadzonych 2 czerwca 2016 w klasach I oraz klasach II szkół ponadgimnazjalnych opracowane przez uczestników Klubu Aktywnego Matematyka działającego w ODN w Łomży. Mamy nadzieję, że będą przydatne jako ćwiczenia przygotowujące do obowiązkowego egzaminu maturalnego z matematyki na poziomie podstawowym. Autorzy: Bogdan Bacławski – III LO w Łomży, Grażyna Borawska, Beata Jabłonowska – ASP w Łomży, Dorota Kozioł – ZsGi P w Jedwabnem, Scholastyka Kulczewska – ZSP w Kolnie, Jadwiga Pieczywek – ODN w Łomży, Anna Sacharczuk – ZSMiO nr 5 w Łomży, Elżbieta Szleszyńska – ZSEiO nr 6 w Łomży, Ewa Szymańska – ZSP w Kolnie. Załączniki: Klasa 1 Arkusz I klasa ZP 2016 Kartoteka I klasa ZP 2016 Schemat oceniania I klasa ZP 2016 Klasa 2 Arkusz II klasa ZP 2016 Kartoteka II klasa ZP 2016 Schemat oceniania II klasa ZP2016 Sprawdziany Scenariusze lekcji
a) opanował w stopniu rozszerzającym wiadomości objęte programem nauczania w danej klasie b) poprawnie stosuje wiadomości, rozwiązuje typowe zadania teoretyczne i praktyczne z niewielką pomocą nauczyciela c) bierze czynny udział w lekcjach matematyki, zawsze jest do nich przygotowany i systematycznie odrabia zadania domowe 4.
Praca z dziećmi mającymi trudności w matematyce DLA UCZNIÓW KLASY CZWARTEJ , PIĄTEJ I SZÓSTEJ, realizujących program nauczania matematyki w oparciu o podręczniki „Matematyka z plusem” wyd. GWO I . Ogólne założenia programu:Program realizowany jest w ramach zajęć wyrównawczych w klasach IV, V, i VI. Powstał w celu wyrównania szans edukacyjnych dzieci z brakami w wiadomościach i umiejętnościach szkolnych z zakresu edukacji matematycznej. Program w pełni uwzględnia edukację matematyczną, zawartą w Podstawie Programowej określonej przez MENiS. W klasach w których uczę jest spora grupa uczniów bardzo słabych, którzy nie radzą sobie w toku zajęć edukacyjnych. W klasie czwartej, piątej i szóstej prowadziłam zajęcia wyrównawcze, które dały wymierne efekty, uczniowie przestali bać się matematyki, potrafią określić zagadnienie, którego nie rozumieją. Program ten jest wyjściem naprzeciw oczekiwaniom uczniów, ich rodziców i moim własnym. Program przygotowany został do realizacji w wymiarze 1 godziny tygodniowo. Dobór treści pozwala na częste odwoływanie się do życia codziennego, co ułatwia uczniowi pojmowanie niektórych zagadnień. II. Cele główny: - wyrównywanie braków edukacyjnych w zakresie realizowanych treści programowych, będących przyczyną trudności szkolnych, - zachęcenie ich do zwiększenia wysiłku w uczeniu się matematyki, kształtowanie pozytywnego nastawienia do podejmowania wysiłku intelektualnego,- wyrabianie własnej wartości,- zniwelowanie przykrych doświadczeń wiązanych z porażkami ucznia na lekcjach matematyki,- uświadomienie potrzeby znajomości pojęć matematycznych w codziennych sytuacjach życiowych,- rozwijanie umiejętności pracy w grupie . Cele szczegółowe:- nauczanie przedstawiania rozwiązań w sposób czytelny, - wyrabianie nawyków sprawdzania otrzymanych odpowiedzi i poprawiania błędów, - rozwijanie umiejętności matematycznych,- kształtowanie pojęć matematycznych,- rozbudzanie zainteresowań, wyrabianie własnej motywacji do (pracy) nauki,- ułatwienie dziecku umiejętności liczenia poprzez ćwiczenia koncentracji uwagi, rozwijanie spostrzegawczości, - kształtowanie umiejętności porównywania, segregowania i samokontroli,- rozwijanie umiejętności posługiwania się metodami matematycznymi w życiu codziennym,- wyrabianie poczucia własnej wartości,- motywowanie do przezwyciężania trudności w powinien: • operować podstawowymi pojęciami arytmetyki i geometrii, • posługiwać się symbolami matematycznymi do zapisywania treści zadań, • przeprowadzać proste rozumowania matematyczne, • postrzegać różnego rodzaju przedmioty jako figury przestrzenne, • rozwijać wyobraźnię przestrzenną, • umieć uzasadnić poprawność własnych spostrzeżeń i myśli, • zdobyć umiejętność dostrzegania związków między matematyką a otaczającym światem, • stosować matematykę do opisu prostych zjawisk przyrodniczych, • zdobyć umiejętności potrzebne w życiu codziennym, takie jak: o posługiwanie się dostępnymi urządzeniami usprawniającymi obliczenia, o sporządzanie rysunków pomocniczych ułatwiających rozwiązywanie problemów praktycznych, o korzystanie z podstawowych jednostek miary (długości, wagi, czasu i pola) o odczytywanie informacji z tabel, diagramów i wykresów, o planowanie wydatków i gospodarowanie pieniędzmi.• posiadać nawyk porządnej, starannej i systematycznej pracy, • być przygotowanym do dalszego kształcenia, do zdobywania i pogłębiania wiedzy oraz szukania informacji. III. Procedury osiągania procesie pomocy dzieciom z trudnościami w nauce bardzo ważną rolę odgrywają aktywność i chęć dziecka do pracy. Ważne jest aby dobrać odpowiednie techniki, metody i zasady pracy:1. Zasady pracy:- Indywidualizacja, czyli dobór środków i metod w zależności od potrzeb i możliwości uczniów (dla każdego inne)- Zasada stopniowania trudności (przechodzenie od prostych zajęć do złożonych).- Zasada systematyczności : indywidualizacja i modyfikacja wymagań dostosowanych do możliwości Metody:- rozwiązywanie zadań, - ćwiczenia,- gry i zabawy,3. Formy pracy:praca indywidualna, grupowa, Środki dydaktyczne:- podręczniki i zeszyty zadań dla klasy IV, V, VI „Matematyki z plusem”,- przyrządy geometryczne,- karty pracy,- figury geometryczne,- geoplany,- zegary,- termometry,- Przewidywane osiągnięcia wyniku realizacji programu uczeń klasy IV:- wyrówna braki edukacyjne w zakresie treści programowych,- ma wyrobione poczucie własnej wartości,- chętnie podejmuje się wysiłku intelektualnego,- umiejętnie stosuje wiedzę matematyczną w różnych sytuacjach życiowych,- zna cyfrowy i słowny zapis liczby wielocyfrowej,- sprawnie wykonuje cztery podstawowe działania matematyczne pisemnie i w pamięci,- rozwiązuje proste zadania tekstowe,- wśród figur geometrycznych potrafi wskazać prostokąt i kwadrat,,- wykonuje obliczenia pieniężne,- potrafi wykonać proste obliczenia zegarowe i kalendarzowe,- potrafi obliczyć pole prostokąta i kwadratu,- zna pojęcie skali,- potrafi wykonać dodawanie i odejmowanie ułamków zwykłych o jednakowych mianownikach oraz ułamków dziesiętnych,- potrafi pomnożyć ułamek zwykły przez liczbę naturalną,- potrafi pomnożyć i podzielić ułamki dziesiętne:W wyniku realizacji programu uczeń klasy V: - wyrówna braki edukacyjne w zakresie treści programowych,- ma wyrobione poczucie własnej wartości,- chętnie podejmuje się wysiłku intelektualnego,- umiejętnie stosuje wiedzę matematyczną w różnych sytuacjach życiowych,- sprawnie wykonuje cztery podstawowe działania matematyczne pisemnie i w pamięci,- rozwiązuje proste zadania tekstowe,- rozróżnia figury geometryczne,- wykonuje obliczenia pieniężne,- potrafi wykonać obliczenia zegarowe i kalendarzowe,- potrafi obliczyć pole figury płaskiej,- zna i stosuje pojęcie skali,- potrafi wykonać cztery działania na ułamkach zwykłych oraz dziesiętnych,- odczytuje wskazania termometru,- wykonuje cztery działania na liczbach całkowitych,- potrafi obliczyć procent z liczby,- umie wykorzystać obliczenia procentowe do rozwiązywania prostych zagadnień praktycznych np. oblicza podwyżkę,- potrafi kreślić siatki graniastosłupów prostych,- potrafi wymienić własności kątów w wielokątach,- potrafi odczytać informacje zawarte na diagramie procentowym, sporządza diagram. W wyniku realizacji programu uczeń klasy VI: - wyrówna braki edukacyjne w zakresie treści programowych,- ma wyrobione poczucie własnej wartości,- chętnie podejmuje się wysiłku intelektualnego,- umiejętnie stosuje wiedzę matematyczną w różnych sytuacjach życiowych,- sprawnie wykonuje cztery podstawowe działania matematyczne pisemnie i w pamięci,- rozwiązuje proste zadania tekstowe,- rozróżnia figury geometryczne,- wykonuje obliczenia pieniężne,- potrafi wykonać obliczenia zegarowe i kalendarzowe,- potrafi obliczyć pole figury płaskiej,- zna i stosuje pojęcie skali,- potrafi wykonać cztery działania na ułamkach zwykłych oraz dziesiętnych,- odczytuje wskazania termometru,- wykonuje cztery działania na liczbach całkowitych,- potrafi obliczyć procent z liczby,- umie wykorzystać obliczenia procentowe do rozwiązywania prostych zagadnień praktycznych np. oblicza podwyżkę,- potrafi kreślić siatki graniastosłupów prostych,- potrafi wymienić własności kątów w wielokątach,- potrafi odczytać informacje zawarte na diagramie procentowym, sporządza diagram,- potrafi rozwiązać proste równanie i nierówność,- potrafi zapisać i obliczyć wartości prostych wyrażeń algebraicznych,- potrafi stosować zdobytą wiedzę do rozwiązywania problemów z życia codziennego. V. Ewaluacja ewaluacji jest ustalenie stopnia opanowania osiągnięć ucznia. Przeprowadzona zostanie na początku roku szkolnego, po I semestrze oraz na zakończenie roku szkolnego. W procesie ewaluacji mogą zostać wykorzystane następujące narzędzia:- testy „na wejściu”, - sprawdziany zaczerpnięte z programu „ Lepsza szkoła”, - obserwacja pedagogiczna,- testy „na wyjściu”,- wyniki sprawdzianu po klasie VI,- rozmowy z dziećmi i RAMOWY ROZKŁAD MATERIAŁU 1 godzina tygodniowo. 36 godzin rocznie. KLASA 4 ARYTMETYKA: 1. Liczby naturalne 2. Ułamki zwykłe i dziesiętne 3. System zapisywania liczbGEOMETRIA 1. Figury na płaszczyźnie 2. Graniastosłupy KLASA 5 ARYTMETYKA: 1. Liczby naturalne 2. Ułamki zwykłe i dziesiętne 3. Procenty 4. Liczby całkowiteGEOMETRIA 1. Figury na płaszczyźnie 2. Graniastosłupy KLASA 6 ARYTMETYKA: 1. Liczby naturalne 2. Ułamki zwykłe i dziesiętne 3. Procenty 4. Liczby wymierneGEOMETRIA 1. Figury na płaszczyźnie 2. Graniastosłupy3. Konstrukcje geometryczne ALGEBRA 1. Proste wyrażenia algebraiczne2. Równania i nierównościVII. Treści programu:Klasa IVARYTMETYKA Liczby naturalne. Ułamki zwykłe i dziesiętne Działania na liczbach naturalne. • Dodawanie, odejmowanie, mnożenie i dzielenie liczb naturalnych (działania pamięciowe). • Obliczanie wartości wyrażeń arytmetycznych z uwzględnieniem kolejności działań. • Działania pisemne • Cechy podzielności liczb naturalnych• Rozwiązywanie prostych zadań z treścią Ułamki zwykłe. Działania na ułamkach zwykłych. • Skracanie, rozszerzanie i zamiana ułamków niewłaściwych na liczby mieszane i odwrotnie • Zaznaczanie ułamków na osi liczbowej • Porównywanie ułamków • Dodawanie, odejmowanie ułamków zwykłych o jednakowych mianownikach• mnożenie ułamków zwykłych przez liczby naturalne• Rozwiązywanie prostych zadań tekstowych. Ułamki dziesiętne. Działania na ułamkach dziesiętnych • Zamiana ułamków zwykłych na dziesiętne i odwrotnie • Porównywanie ułamków dziesiętnych • Dodawanie, odejmowanie, mnożenie i dzielenie ułamków dziesiętnych • Rozwiązywanie prostych zadań tekstowych System zapisywania liczb• System dziesiątkowy• Znaki rzymskie• Jednostki długości i masy• Porównywanie liczb naturalnych wielocyfrowychGEOMETRIA Figury na płaszczyźnie Własności figur płaskich. • Rodzaje i mierzenie kątów• Rysowanie prostokątów i kwadratów• Położenie prostych i odcinków Pola i obwody trójkątów i czworokątów • Obliczanie pól i obwodów prostokątów i kwadratów • Rozwiązywanie prostych zadań z treścią Prostopadłościany Własności prostopadłościanów• Rozpoznawanie krawędzi, wierzchołków, ścian, podstaw prostopadłościanów • Rozpoznawanie i kreślenie siatek prostopadłościanów Pole powierzchni prostopadłościanu • Jednostki pola • Obliczanie pól powierzchni (proste przykłady)Klasa VARYTMETYKA Liczby naturalne. Ułamki zwykłe i dziesiętne Działania na liczbach naturalne. • Dodawanie, odejmowanie, mnożenie i dzielenie liczb naturalnych (działania pamięciowe). • Obliczanie wartości wyrażeń arytmetycznych z uwzględnieniem kolejności działań. • Działania pisemne • Rozwiązywanie prostych zadań z treścią Ułamki zwykłe. Działania na ułamkach zwykłych. • Skracanie, rozszerzanie i zamiana ułamków niewłaściwych na liczby mieszane i odwrotnie • Zaznaczanie ułamków na osi liczbowej • Porównywanie ułamków • Dodawanie, odejmowanie, mnożenie i dzielenie ułamków zwykłych • Rozwiązywanie prostych zadań tekstowych. Ułamki dziesiętne. Działania na ułamkach dziesiętnych • Zamiana ułamków zwykłych na dziesiętne i odwrotnie • Porównywanie ułamków dziesiętnych • Dodawanie, odejmowanie, mnożenie i dzielenie ułamków dziesiętnych • Działania łączne na ułamkach zwykłych i dziesiętnych • Rozwiązywanie prostych zadań tekstowych Procenty Obliczenia procentowe • Zapisywanie ułamków w postaci procentów. • Zapisywanie procentów w postaci ułamków. • Odczytywanie i rysowanie diagramów procentowych. • Obliczanie procentu danej liczby. • Rozwiązywanie prostych zadań tekstowych. Liczby całkowite• Rozpoznawanie liczby dodatniej i ujemnej• Dodawanie i odejmowanie liczb całkowitychGEOMETRIA Figury na płaszczyźnie Własności figur płaskich. • Rodzaje kątów • Rodzaje trójkątów. • Własności kątów w trójkątach. • Rodzaje czworokątów. • Własności kątów w czworokątach. • Własności przekątnych w i obwody trójkątów i czworokątów • Obliczanie pól i obwodów trójkątów i czworokątów. • Rozwiązywanie prostych zadań z treścią Graniastosłupy Własności graniastosłupów • Rozpoznawanie krawędzi, wierzchołków, ścian, podstaw graniastosłupów prostych • Rozpoznawanie i kreślenie siatek graniastosłupów prostych Pole powierzchni i objętość graniastosłupów • Jednostki pola i objętości • Obliczanie pól powierzchni graniastosłupów (proste przykłady) • Obliczanie objętości graniastosłupów (proste przykłady) Klasa VIARYTMETYKA Liczby naturalne. Ułamki zwykłe i dziesiętne Działania na liczbach naturalne. • Dodawanie, odejmowanie, mnożenie i dzielenie liczb naturalnych (działania pamięciowe). • Obliczanie wartości wyrażeń arytmetycznych z uwzględnieniem kolejności działań. • Działania pisemne • Rozwiązywanie prostych zadań z treścią Ułamki zwykłe. Działania na ułamkach zwykłych. • Skracanie, rozszerzanie i zamiana ułamków niewłaściwych na liczby mieszane i odwrotnie • Zaznaczanie ułamków na osi liczbowej • Porównywanie ułamków • Dodawanie, odejmowanie, mnożenie i dzielenie ułamków zwykłych • Rozwiązywanie prostych zadań tekstowych. Ułamki dziesiętne. Działania na ułamkach dziesiętnych • Zamiana ułamków zwykłych na dziesiętne i odwrotnie • Porównywanie ułamków dziesiętnych • Dodawanie, odejmowanie, mnożenie i dzielenie ułamków dziesiętnych • Działania łączne na ułamkach zwykłych i dziesiętnych • Rozwiązywanie prostych zadań tekstowych Procenty Obliczenia procentowe • Zapisywanie ułamków w postaci procentów. • Zapisywanie procentów w postaci ułamków. • Odczytywanie i rysowanie diagramów procentowych. • Obliczanie procentu danej liczby. • Rozwiązywanie prostych zadań tekstowych. Liczby całkowite• Rozpoznawanie liczby dodatniej i ujemnej• Dodawanie i odejmowanie liczb całkowitychGEOMETRIA Ewaluacja ma służyć uczniom, dyrekcji szkoły i nauczycielomrealizującym program. Wszystkie strony będą informowane o jej wynikachi będą uczestniczyły w wyciąganiu, formułowaniu wniosków i realizowaniuzaleceń na na płaszczyźnie Własności figur płaskich. • Rodzaje kątów • Rodzaje trójkątów. • Własności kątów w trójkątach. • Rodzaje czworokątów. • Własności kątów w czworokątach. • Własności przekątnych w i obwody trójkątów i czworokątów • Obliczanie pól i obwodów trójkątów i czworokątów. • Rozwiązywanie prostych zadań z treścią Graniastosłupy Własności graniastosłupów • Rozpoznawanie krawędzi, wierzchołków, ścian, podstaw graniastosłupów prostych • Rozpoznawanie i kreślenie siatek graniastosłupów prostych Pole powierzchni i objętość graniastosłupów • Jednostki pola i objętości • Obliczanie pól powierzchni graniastosłupów (proste przykłady) • Obliczanie objętości graniastosłupów (proste przykłady) Konstrukcje geometryczne• Przenoszenie odcinków i kątów• Proste prostopadłe i równoległe• Symetralna odcinka, dwusieczna kata• Konstrukcja trójkątaWyrażenia algebraiczne • Zapisywanie i odczytywanie prostych wyrażeń algebraicznych • Obliczanie wartości liczbowych prostych wyrażeń algebraicznych • Redukcja wyrazów podobnych• Mnożenie i dzielenie sum algebraicznych przez liczbyRównania i nierówności• Zapisywanie równań i nierówności. Liczba spełniająca równanie lub nierówność• Rozwiązywanie równań i nierówności• Proste zadania tekstowe
Program „Z matematyką za pan brat” jest programem edukacyjnym realizowanym 1 x w tygodniu w ramach dodatkowych zajęć dla chętnych uczniów klasy II zainteresowanych matematyką, lubiących zabawy z matematyką. W zajęciach mogą brać udział nie tylko uczniowie zdolni, którzy chcą rozwijać swoje zainteresowania matematyczne, ale i
Statystyki 45 873 957 ogólnie rozwiązane problemy 36 251 267 poprawnie rozwiązanych zadań 1 064 020 spędzone godziny 14 800 registrovaných tříd 39 000 regitered teachers 321 291 registered students
Większość znanych mi dzieciaków miało właśnie problemy z matematyką w klasie 4. Wt, 05-02-2019 Forum: Starsze dziecko - Re: 4 klasa dramat.
Matematyka w klasie 6 nie należy do najłatwiejszych. Szóstoklasista powinien pamiętać o niektórych wzorach, figurach geometrycznych i tabliczce mnożenia. Co jeszcze powinien umieć uczeń szóstej klasy? Jakie zadania z matematyki przewidziane są dla dzieci w tym wieku? Zobacz film: "Dlaczego dziewczynki mają lepsze oceny w szkole?" spis treści 1. Skąd biorą się problemy z matematyką? 2. Co powinien umieć uczeń w 6 klasie? 1. Skąd biorą się problemy z matematyką? Matematyka potrafi uczniom przysparzać zmartwień. Z czego to wynika? Otóż w nauce matematyki podobnie jak w przypadku języków obcych, liczy się systematyczność i unikanie zaległości. Aby zrozumieć każde kolejne zagadnienie, musimy dobrze poznać wcześniejsze. Jeśli zaobserwujemy u dziecka trudności z matematyką, powinniśmy zweryfikować, na którym etapie powstały zaległości i postarać się wytłumaczyć dziecku powyższe zagadnienia raz jeszcze. Jeśli nie czujemy się na siłach, aby wytłumaczyć dziecku dane zagadnienie, możemy także skorzystać z bogatej oferty korepetytorów. 2. Co powinien umieć uczeń w 6 klasie? Szóstoklasista zgodnie z podstawą programową powinien na tym etapie umieć: wykonywać dodawanie, odejmowanie, mnożenie i dzielenie; potęgować liczby naturalne pisemnie i w pamięci; dokonywać obliczeń na ułamkach; ułamki zapisywać w postaci rozwinięcia dziesiętnego nieskończonego, dodawać, odejmować, mnożyć i dzielić ułamki zwykłe i dziesiętne, wykonywać mało skomplikowane rachunki, w których występują jednocześnie ułamki zwykłe i dziesiętne; zamieniać i prawidłowo stosować jednostki długości, masy, czasu; zamieszczać dane na diagramach; obliczać pola trójkątów oraz czworokątów; podstawowe własności figur geometrycznych płaskich; rozwiązywać zadania dotyczące czasu, drogi i prędkości; posługiwać się jednostkami miary objętości, pola i długości; odczytywać, zapisywać i interpretować proste wyrażenia algebraiczne; rozpoznawać graniastosłupy proste, ostrosłupy, walce, stożki i kule, obliczać objętość i pole powierzchni prostopadłościanów; rozwiązywać równania pierwszego stopnia z jedną niewiadomą, występującą po jednej stronie równania. polecamy
Do sprawdzianu szóstoklasisty uczniowie przystąpią już 1 kwietnia. W tym roku test będzie miał nową formułę. Egzamin zostanie podzielony na dwie części. Pierwsza z nich, trwająca 80
Czesc. Po pierwsze zapomnij o myslach samobojczych. Masz 16 lat i nic jeszcze w zyciu nie osiagnales, podobnie jak Twoi koledzy prymusi z matmy. Wszystko przed Tobą wiec nigdy nie mysl o takich rzeczach. Po drugie, Twoje problemy z matematyka nie są wieksze niz innych slabeuszy matematycznych tylko ty zrobiles z tego psychozę i sam siebie nakręcasz. Po trzecie, Twoje problemy wynikaja z tego, że nigdy nie uczyłes sie matematyki albo Ciebie żle uczono (prawdopodobnie to drugie). Masz zaleglosci od podstaw ktore się powiekszają bo nie majac podstaw nie zrozumiesz dalszych rzeczy. Po czwarte, Twoja niewiedza z matematyki nie ma nic wspolnego z przysadką tylko z tym co napisalem w punkcie 3. Po piate nie przejmuj sie, ze nie umiesz szybko dodawac w glowie. Jak bedziesz trenowal matematyke to zobaczysz ze Twoj mozg bedzie w koncu sam to liczyl i ze sie nawet mocno zdziwisz. Takie samoliczenie samo przyjdzie. Po szóste, matematyka nie jest trudna. To znaczy kiedy sie ma 16 lat to jest trudna ale wierz mi, nie jest, tylko tak wyglada ze jest. Po siódme boga nie ma. Jest tylko piekny Kosmos ktory mozna pieknie opisać matematyką. MOJE RADY 1. Zalatw sobie korepetytora z matmy. Najlepiej faceta (przepraszam za seksizm wszystkie kobiety które to czytają ale tu chodzi o relacje męsko-męskie typu nauczyciel-uczeń w najlepszej tradycji greckiej). 2. Niech korepetytor uczy Cie podstaw matematyki. Nie tylko tego, co przerabiacie na lekcjach lecz przede wszystkim podstaw. 3. Jezeli nauczysz sie jakiegos materialu np. zasad potegowania, to trenuj to sam. Trenuj matme nie tylko wtedy, kiedy masz korepetycje tylko sam, codziennie albo nie-codziennie byle regularnie, sam trenuj, sam sobie WYMYSLAJ PRZYKLADY i je rozwiazuj. Sam wymyslaj co raz bardziej skomplikowane przyklady i je rozwiazuj. Baw sie sam ze sobą. Baw sie matematyką. Wszystko pokaz korepetytorowi. Gwarantuje Ci, ze jak juz w koncu dobrze załapiesz jakiś temat, to tak sie podjadasz, ze nic nie bedzie w stanie przebic tej radosci. Ale musisz pracować. Nie ma ze boli. 4. Pracujac z korepetytorem NIGDY nie klam ze rozumiesz jesli nie rozumiesz. zadawaj glupie pytania, wtedy on bedzie wiedzial czego nie rozumiesz i czego Ci jeszcze brakuje. Przerabiaj temat do skutku az sie poplaczesz. Zadnej litosci. 5. Pamietaj. Nie rob z korepetycji celebry. Nie traktuj korepetycji jak jakiejs mszy swietej. Nie celebruj. Traktuj korepetycje jak trening kosza lub na silowni. Nie rob z tego czegos co sie pojawia i znika a Ty zapominasz i idziesz robic cos przyjemniejszego. To matma ma byc tym czyms przyjemnym co bedziesz robil. Tak ma byc. Wtedy sie nauczysz. 6. Zmien nastawienie. Nie mow sobie, ze Ty tego nie zrozumiesz. Program matmy w szkole jest taki ze kazdy zrozumie. Trzeba tylko miec odpowiednie podejscie. Nie wmawiaj sobie, ze nie masz umyslu scislego ze jestes humanista - nie ma czegos takiego. Jedni po prostu lubia matme a inni nie lubia a jak ktos nie lubi to na 99% nie bedzie jej rozumial bo sie nie bedzie mu chcialo siadac w domu i rozwiązywać zadania. A matme trzeba trenowac. Wtedy sama wchodzi do glowy. Pożytki z matematyki są ogromne. Dzieki matmie, dzieki treningowi matematyki, mózg tworzy ogromne ilosci nowych komorek i sie coraz bardziej zamienia w niewyobrażalną maszyne analityczną. Jesli liczba komorek sie powieksza to rosnie inteligencja czyli zdolnosc reagowania na swiat. Wtedy nowe działy matmy łatwiej wchodza do głowy bo mózg jest przygotowany zeby to wszystko przerobić. Im wiecej cwiczysz matmy im wiecej przyswajasz matmy tym mozg masz lepszy i tym szybciej uczysz sie nowych rzeczy. Oczywiscie taki super mozg swietnie sobie radzi ze wszystkimi innymi problemami (fizyka, biologia, literatura) PAMIĘTAJ, NAJLEPSZYM SPOSOBEM NA NAUCZENIE SIE MATEMATYKI JEST SAMODZIELNE TRENOWANIE W DOMU, WYMYSLANIE SOBIE CORAZ TRUDNIEJSZYCH PRZYKŁADÓW.
Dane uzyskane z Centralnej Komisji Egzaminacyjnej wskazują, że uczniowie mają z matematyką większe problemy niż z pozostałymi przedmiotami. Bowiem średni wynik egzaminu maturalnego z matematyki w latach 2015 - 2017 średnio wyniósł 55 proc., podczas gdy z języka polskiego - 60 proc., a z języka angielskiego - 73 proc. Co szósty
Witam :) Dojrzałość i gotowość dziecka do procesu edukacyjnego przebiega w różnym tempie. Proszę się nie zrażać . Ważne jest by zwrócić uwagę na to , by nie krzyczeć i nie krytykować dziecka. Trzeba znaleźć sposób, by dziecko bawiło się wpajaną wiedzą, a nie czuło zastraszający przymus. Na podstawie Pani wypowiedzi trudno jest określić dokładnie genezę problemu , jednakże , warto zwrócić uwagę na to , by dziecko czuło przyjemność w czasie uczenia się. Może warto wprowadzić gry i zabawy , które będą przemycały wiedzę , a dziecko będzie odczuwało przyjemność z zapamiętywania i uczenia się . Ważnym elementem podczas zapamiętywania i rozumienia czytanego tekstu jest czytanie go półgłosem , tak by dziecko słyszało czytany przez siebie tekst. Trudne do zapamiętania wzory , słowa, można wywieszać w nietypowych miejscach , na wysokości oczu. A trudne słowa z zakresu ortografii , można wywieszać ze stałymi obrazkami - . ( Np. wszędzie tam gdzie jest "ó" narysowany jest ogórek , tam gdzie " ż" - żyrafa itp. ) . By zmotywować dziecko pozytywnie , można wprowadzić metodę zbierania punktów, które następnie zamieniane będą na wybraną przez niego nagrodę - np. wspólna rodzinna zabawa, gra planszowa, rodzinny wieczór bajkowy. życzę cierpliwości. Pozdrawiam Marzena Zięba
UihmP.